Computation and (Today's) Internet Services

Leslie L. Daigle

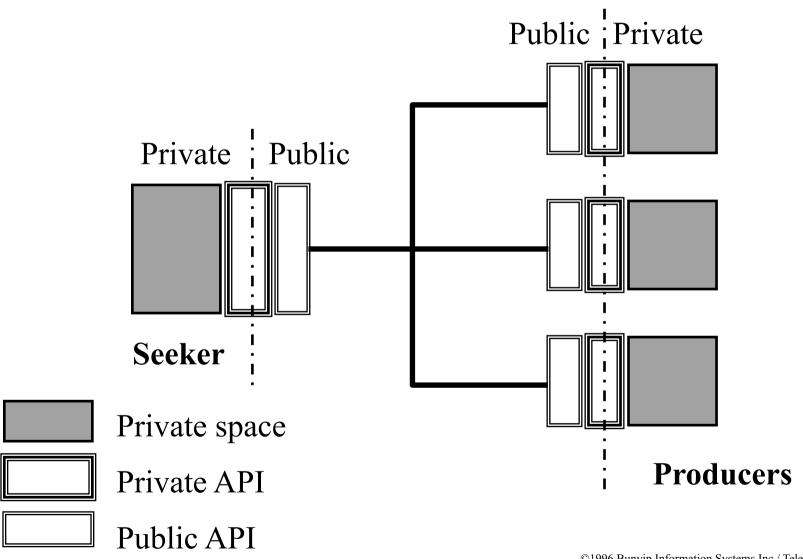
Vice President Research Bunyip Information Systems Inc

Montréal, Canada

Patrik Fältström

Senior Researcher
Tele2
Stockholm, Sweden

November 5, 1996


Remember that we have...

- ...different owners of
 - Source
 - Metadata
 - Index
 - Query
 - Client's knowledge

Who are the owners?

- Producer
 - Owner of information
- Indexer
 - Mediator or "middle man"
- Consumer
 - Seeker of information

Privacy

The Consumer's Eye-View

- How do I find the stuff I want?
- How do I know if I' ve found all available resources?
- How do I limit the number of "hits" I get?
- How can I express my needs in the language of the search tools?

The Producer's Perspective

- Once I have produced electronic information, how do I advertise it?
- How do I ensure that the right people find it?
- How can I limit the range of people who find it (security)?

Models of Distributed Internet Computing - 1996

- Common
 - Full-sweep "pull" indexing
 - Cooperative (distributed) "pull" indexing
- New
 - Forward knowledge "push"
- On the horizon...
 - New paradigms (URAs, URNs)

Full-Sweep "pull"

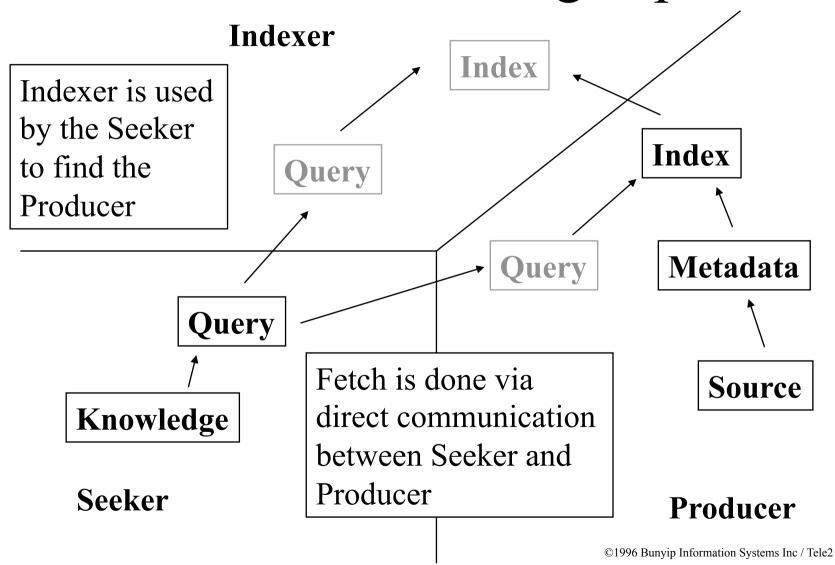
- Lycos, Alta-Vista et.al.
 - Pro proprietary indexing format
 - Pro uniformity and consistency of index data
 - Con huge undertaking to fully map the space

Full-Sweep "pull" **Indexer** Metadata **Index** Query Query Source Knowledge

Seeker

Producers

Distributed "pull"


- Archie et.al.
 - Pro maintain proprietary data format
 - Pro maintain uniformity and consistency of index data
 - Pro multiple parts of the space can be mapped independently
 - Con integrating and coordinating results from different participating sources

Forward Knowledge "push"

- Whois++, Common Indexing Protocol et.al.
 - Pro update is in the hands of the information producer
 - Pro searches are done close to the source
 - Pro specialized index hierarchies can be built
 - Con update is in the hands of the information producer

Forward Knowledge "push"

Fetch and Search

• Fetch

- You know what you are looking for
- You have the path to the file in a filesystem
- You have the domainname to lookup in DNS
- You have the Distinguished Name in X.500

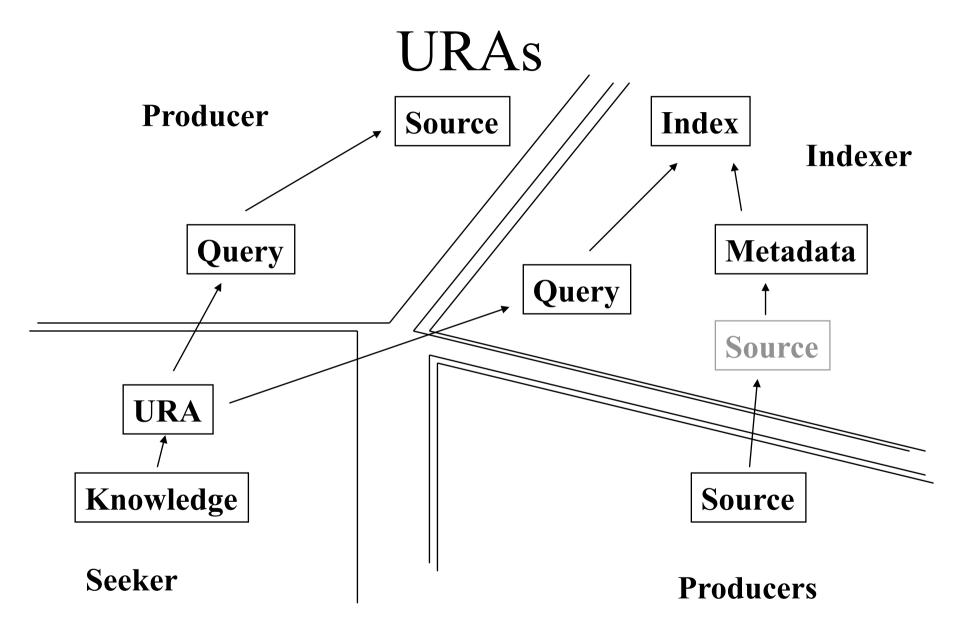
• Search

- You do not know what you are looking for
- You know some words in the file
- You have the name of the host (not domain) in DNS
- You have the name of a person to find in X.500

Fetch and Search

- Whats the point?
 - Fetching things is simple
 - Searching locally in a controlled environment is easy
 - Searching globally, in a heterogenous environments is very hard
- Indexing is needed!

Distributing knowledge


- Passing (pushing) index information is a way of announcing the knowledge you have
- A Seeker can use that information to find a Producer
- This is called Query-Routing
 - See Common Indexing Protocol, the FIND working group in the IETF and Whois++

Future Paradigms

- More client-side computation
- Longevity through indirection

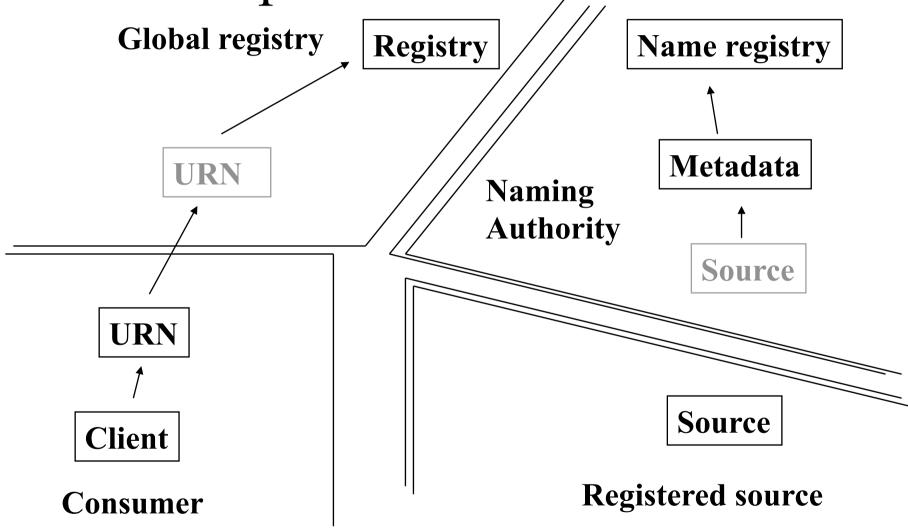
Uniform Resource Agents

- Client-side information representation
- Provide a formalized structure for encapsulating composite Internet activities
 - URA header
 - Activation data
 - Targets
 - Experience information
 - Activity
 - Response filter

Uniform Resource Names

- A rose, by any other name... would be hard to find on the Internet
- URL resource location
 - 3rd item from the left, 4th shelf down
- URN resource name
 - Moby Dick

UR{L|N} Computational Distinctions


• URL

- specify location & protocol to access desired resource
- resource may move, disappear, change

• URN

- mapping from identifier to content must persist across changes in ownership, etc
- therefore, require computation outside the space of the resource owner

The Proposed URN Framework

NAPTR - An Expermental URN Implementation

- A longlived name of the content of a resource –urn:inet:acme.se:information
- Lookup rules for "inet" (NAPTR for inet.urn.net)
- Lookup rules for acme.se (NAPTR for acme.se)
- Lookup rules for http in the domain acme.se (SRV for http.tcp.acme.se)
- Connect to www.acme.se port 80 and fetch
 - •http://www.acme.se:80/N2R/urn:inet:acme.se:information

SRV Resource Record

- Pointing out an access point for a service in a domain
- Arguments are
 - -Order number
 - -Priority
 - -Portnumber
 - -Name of computer
- Example for http/tcp

```
http.tcp.acme.se. IN SRV 10 10 80 server.acme.se. http.tcp.sales.acme.se. IN SRV 10 10 1024 server.acme.se.
```

NAPTR Resource Record

- Naming authority pointer record
- Arguments are
 - -Order number
 - -Priority
 - -Flags
 - -Service
 - -Regular expression
 - -Replacement string

```
inet.urn.net. IN NAPTR 10 10 "" "" "/^[^:]*:inet:([^:]*):.*$/\1/i" "" acme.se. IN NAPTR 10 10 "http+n2r" "s" " http.tcp.acme.se.
```

Conclusion

- The Internet information space is characterized by a distribution of knowledge necessary for carrying out information (retrieval) tasks
- Different computational models exist and are being explored to deal with/make use of that distribution